Kosinová podobnost a kosinová vzdálenost

Úvod :

17. června 2020 – 4 minuty čtení

Kosinová podobnost se používá k určení podobnosti mezi dokumenty nebo vektory. Matematicky měří kosinus úhlu mezi dvěma vektory promítnutými do vícerozměrného prostoru. k dispozici jsou i další techniky měření podobnosti, například euklidovská vzdálenost nebo manhattanská vzdálenost, ale my se zde budeme věnovat kosinové podobnosti a kosinové vzdálenosti.

Vztah mezi kosinovou podobností a kosinovou vzdáleností lze definovat takto:

  1. Podobnost se zmenšuje, když se zvětšuje vzdálenost mezi dvěma vektory

2. Podobnost se zvětšuje, když se zmenšuje vzdálenost mezi dvěma vektory.

Kosinová podobnost a kosinová vzdálenost:

Kosinová podobnost říká, že ke zjištění podobnosti mezi dvěma body nebo vektory musíme najít úhel mezi nimi.

Vzorec pro zjištění kosinové podobnosti a vzdálenosti je následující:

Tady A=bod P1,B=bod P2 (v našem příkladu)

Podívejme se na různé hodnoty Cos Θ pro pochopení kosinové podobnosti a kosinové vzdálenosti mezi dvěma datovými body(vektory) P1 & P2 s ohledem na dvě osy X a Y.

Následující obrázek má tyto případy.

Případ 1: Když je úhel mezi body P1 & P2 45 stupňů, pak

kosinová podobnost= Cos 45 = 0.525

Případ 2: Když jsou dva body P1 & P2 od sebe vzdáleny a úhel mezi body je 90 Stupňů pak

cosine_similarity= Cos 90 = 0

Případ 3: Když jsou dva body P1 & P2 od sebe vzdáleny a úhel mezi body je 90 Stupňů pak

cosine_similarity= Cos 90 = 0: Když jsou dva body P1 & P2 velmi blízko sebe a leží na stejné ose a úhel mezi body je 0 stupňů, pak

cosine_similarity= Cos 0 = 1

Následující obrázek má další tři případy.

Případ 4: Když body P1 & P2 leží proti sobě a úhel mezi body je 180 Stupňů, pak

kosin/podobnost= Cos 180 = -1

Případ 5: Když úhel mezi body P1 & P2 je 270 Stupňů, pak

kosin/podobnost= Cos 270 = 0

Případ 6: Když úhel mezi body P1 & P2 je 270 Stupňů, pak

kosin/podobnost= Cos 270 = 0

: Když je úhel mezi body P1 & P2 360 Stupňů, pak

cosine_similarity= Cos 360 = 1

Přejděme tyto hodnoty jednotlivých výše diskutovaných úhlů a podívejme se na kosinusovou vzdálenost mezi dvěma body.

1 – Cosine_Similarity=Cosine_Distance

Případ 1: Když Cos 45 stupňů

Nasaďme hodnoty ve výše uvedeném vzorci .

1-0.525= Cosine_Vzdálenost

0.475 =Kosin_Vzdálenost

Případ 2: Když Cos 90 Stupeň

1-0= Kosin_Vzdálenost

1 =Kosin_Vzdálenost

Případ 3: Když Cos 0 Stupeň

1-1= Kosin_Vzdálenost

0 =Kosin_Vzdálenost

Případ 4: Když Cos 0 Stupeň

1-1= Kosin_Vzdálenost

:

1-(-1)=Kosin_Vzdálenost

2 =Kosin_Vzdálenost

Případ 5: Když Cos 270 Stupeň

1-0= Kosin_Vzdálenost

1 =Kosin_Vzdálenost

Případ 6:

1-1= Cosine_Distance

0 =Cosine_Distance

Jasně vidíme, že když je vzdálenost menší, podobnost je větší(body jsou blízko sebe) a vzdálenost je větší ,dva body jsou nepodobné (daleko od sebe)

Kosinová podobnost a kosinová vzdálenost se hojně využívá v doporučovacích systémech k doporučování produktů uživatelům na základě toho, co se jim líbí a nelíbí.

Několik příkladů, kde se to používá, jsou webové stránky jako Amazon, Flipkart k doporučování položek zákazníkům pro personalizované zážitky, hodnocení a doporučování filmů atd.

Závěr : Doufám, že jste nyní jasně pochopili matematiku, která stojí za výpočtem kosinové podobnosti a kosinové vzdálenosti, a její použití.

Doufám, že se vám můj článek líbil. prosím, stiskněte tlačítko Clap 👏 (50krát), abyste mě motivovali k dalšímu psaní.

Chcete se připojit :

Odkaz : https://www.linkedin.com/in/anjani-kumar-9b969a39/

Pokud se vám mé příspěvky zde na Médiu líbí a přáli byste si, abych v této práci pokračoval, zvažte, zda mě podpořit na patreonu

.

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna.