Emmy Noether var en stor kraft inom matematiken – och visste det. Hon var helt säker på sin förmåga och sina idéer. Ändå går dessa idéer, och deras bidrag till vetenskapen, ett sekel senare ofta obemärkt förbi. De flesta fysiker är medvetna om hennes fundamentala sats, som sätter symmetri i centrum för den fysiska lagen. Men hur många vet något om henne och hennes liv?
En konferens i London den här veckan, Noether Celebration, hoppas kunna ändra på detta. Det är ett välkommet initiativ. I en värld där unga forskare letar efter inspirerande kvinnliga förebilder är det svårt att tänka sig en mer förtjänt kandidat.
Noether föddes 1882 i Erlangen, Tyskland. Hennes föräldrar ville att alla deras barn skulle doktorera, så trots att många universitet på den tiden inte formellt accepterade kvinnor, gick hon dit. Efter examen hindrade sexistiska bestämmelser Noether från att få jobb inom den akademiska världen. Hon var oförskräckt och föreläste under många år i Erlangen och från 1915 vid universitetet i Göttingen – ofta gratis.
På den tiden var den staden centrum för den matematiska världen, till stor del på grund av närvaron av två av dess titaner – Felix Klein och David Hilbert. Men även när Noether fick betalt för att undervisa i Göttingen och gjorde sina viktigaste bidrag, ingrep ödet och ytterligare diskriminering: Hitler tog makten 1933 och hon fick sparken för att hon var judinna. Hon flydde till USA och undervisade vid Bryn Mawr College i Pennsylvania tills hon dog 1935, bara 53 år gammal.
Noether ägnade sin karriär åt algebra och kom att se den i ett slående nytt ljus. ”Alla vi gillar att förlita oss på siffror och formler”, skrev Bartel van der Waerden, hennes tidigare elev, i sin nekrolog över Noether. ”Hon var endast intresserad av begrepp, inte av visualisering eller beräkning”.
Noether såg matematiken som det som nu kallas strukturer. För henne spelade egenskaperna hos en strukturs komponenter – vare sig det var tal, polynom eller något annat – mindre roll än nätverken av relationer mellan en hel uppsättning objekt. Detta gjorde det möjligt för henne att ge bevis som gällde för mer allmänna strukturer än de ursprungliga och som avslöjade osynliga samband.
Det var ett nytt och elegant tillvägagångssätt som förändrade algebrans ansikte. Och Noether insåg att det kunde påverka andra delar av matematiken. En av dem var topologi, ett område där ”hon publicerade en halv mening och har en evig effekt”, skrev en matematiker. Före Noether hade topologer räknat hål i munkar; hon använde hela kraften i sina strukturer för att skapa något som kallades algebraisk topologi.
De resultat som Noether publicerade för 100 år sedan var för henne ett sällsynt försök att ta sig in i fysiken, som hon inte var särskilt intresserad av. Albert Einstein hade just utvecklat sin allmänna relativitetsteori och kämpade med att förstå hur energi passade in i hans ekvationer. Hilbert och Klein arbetade också med det och bad Noether om hjälp.
Att hon hjälpte till är en underdrift. Noethers expertis inom symmetri ledde till att hon upptäckte att symmetrierna i ett fysiskt system är oupplösligt kopplade till fysiska storheter som bevaras, till exempel energi. Dessa idéer blev kända som Noethers sats (E. Noether Nachr. d. Ges. d. Wiss. zu Göttingen, Math.-phys. Kl. 1918, 235-257; 1918).
Som svar på en gåta inom den allmänna relativitetsteorin blev denna sats en vägledande princip för upptäckten av nya fysikaliska lagar. Forskarna insåg till exempel snart att bevarandet av den elektriska nettoladdningen – som varken kan skapas eller förstöras – är intimt förknippat med rotationssymmetrin hos ett plan runt en punkt. Effekten var djupgående: de som skapade partikelfysikens standardmodell och de forskare som försöker utvidga den tänker i termer av Noethers symmetrier.
I vissa biografier framställs Noether felaktigt som ett något hjälplöst geni som var utlämnad åt människors välgörenhet. I verkligheten var hon en självsäker personlighet, en erkänd ledare och den första kvinnliga plenarföreläsaren vid den berömda International Congress of Mathematicians.
Kvinnors ställning inom matematik och vetenskap har förbättrats sedan Noethers tid, men fördomar och diskriminering kvarstår. Alltför få ledande kvinnliga matematiker får det erkännande de förtjänar. (Endast en kvinna, Maryam Mirzakhani, har fått Fieldsmedaljen, och ingen har vunnit Abelpriset – fältets främsta utmärkelser). Noether är en inspiration: bland annat för den brittiska matematikern Elizabeth Mansfield, som var med och organiserade mötet i London och som arbetar med moderna utvidgningar av Noethers arbete.
Vi vet inte hur många potentiella Emmy Noethers som orättvist har nekats chansen att visa sina talanger. Fler människor borde känna till – och fira – en person som mot alla odds förändrade den vetenskapliga världen.